2014年四川省高考数学试卷(文科)(含解析版)
2014年四川省高考数学试卷(文科)
一、选择题(共10小题,每小题5分,共50分)
1.(5分)已知集合A={x|(x+1)(x﹣2)≤0},集合B为整数集,则A∩B=( )
A.{﹣1,0} B.{0,1}
C.{﹣2,﹣1,0,1}D.{﹣1,0,1,2}
2.(5分)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5000名居民的阅读时间的全体是( )
A.总体B.个体
C.样本的容量D.从总体中抽取的一个样本
3.(5分)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点( )
A.向左平行移动1个单位长度B.向右平行移动1个单位长度
C.向左平行移动π个单位长度D.向右平行移动π个单位长度
4.(5分)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积为( )
(锥体体积公式:V=Sh,其中S为底面面积,h为高)
A.3B.2 C. D.1
5.(5分)若a>b>0,c<d<0,则一定有( )
A.>B.< C.> D.<
6.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为( )
A.0B.1 C.2 D.3
7.(5分)已知b>0,log5b=a,lgb=c,5d=10,则下列等式一定成立的是( )
A.d=acB.a=cd C.c=ad D.d=a+c
8.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于( )
A.mB.m C.m D.m
9.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的直线mx﹣y﹣m+3=0交于点P(x,y),则|PA|+|PB|的取值范围是( )
A.[,2]B.[,2] C.[,4] D.[2,4]
10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )
A.2B.3 C. D.
二、填空题(本大题共5小题,每小题5分,共25分)
11.(5分)双曲线﹣y2=1的离心率等于 .
12.(5分)复数= .
13.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()= .
14.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m= .
15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:
①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;
②函数f(x)∈B的充要条件是f(x)有最大值和最小值;
③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.
④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.
其中的真命题有 .(写出所有真命题的序号)
三、解答题(共6小题,共75分)
16.(12分)一个盒子里装有三张卡片,分别标记有数字1、2、3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a、b、c.
(Ⅰ)求“抽取的卡片上的数字满足a+b=c”的概率;
(Ⅱ)求“抽取的卡片上的数字a、b、c不完全相同”的概率.
17.(12分)已知函数f(x)=sin(3x+).
(1)求f(x)的单调递增区间;
(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.
18.(12分)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形
(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;
(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.
19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*)
(Ⅰ)证明:数列{bn}为等比数列;
(Ⅱ)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{anbn2}的前n项和Sn.
20.(13分)已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.
21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.
(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.
2014年四川省高考数学试卷(文科)
参考答案与试题解析
一、选择题(共10小题,每小题5分,共50分)
1.(5分)已知集合A={x|(x+1)(x﹣2)≤0},集合B为整数集,则A∩B=( )
A.{﹣1,0} B.{0,1}
C.{﹣2,﹣1,0,1}D.{﹣1,0,1,2}
【考点】1E:交集及其运算.菁优网版权所有
【专题】5J:集合.
【分析】由题意,可先化简集合A,再求两集合的交集.
【解答】解:A={x|(x+1)(x﹣2)≤0}={x|﹣1≤x≤2},又集合B为整数集,
故A∩B={﹣1,0,1,2}
故选:D.
【点评】本题考查求交,掌握理解交的运算的意义是解答的关键.
2.(5分)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5000名居民的阅读时间的全体是( )
A.总体B.个体
C.样本的容量D.从总体中抽取的一个样本
【考点】BE:用样本的数字特征估计总体的数字特征.菁优网版权所有
【专题】5I:概率与统计.
【分析】根据题意,结合总体、个体、样本、样本容量的定义可得结论.
【解答】解:根据题意,结合总体、个体、样本、样本容量的定义可得,5000名居民的阅读时间的全体是总体,
故选:A.
【点评】本题主要考查总体、个体、样本、样本容量的定义,属于基础题.
3.(5分)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点( )
A.向左平行移动1个单位长度B.向右平行移动1个单位长度
C.向左平行移动π个单位长度D.向右平行移动π个单位长度
【考点】HJ:函数y=Asin(ωx+φ)的图象变换.菁优网版权所有
【专题】57:三角函数的图像与性质.
【分析】直接利用函数图象的平移法则逐一核对四个选项得答案.
【解答】解:∵由y=sinx到y=sin(x+1),只是横坐标由x变为x+1,
∴要得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点向左平行移动1个单位长度.
故选:A.
【点评】本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.是基础题.
4.(5分)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积为( )
(锥体体积公式:V=Sh,其中S为底面面积,h为高)
A.3B.2 C. D.1
【考点】L!:由三视图求面积、体积.菁优网版权所有
【专题】11:计算题;5F:空间位置关系与距离.
【分析】根据三棱锥的俯视图与侧视图判定三棱锥的一个侧面与底面垂直,判断三棱锥的高与底面三角形的形状及边长,把数据代入棱锥的体积公式计算.
【解答】解:由三棱锥的俯视图与侧视图知:三棱锥的一个侧面与底面垂直,高为,
底面为等边三角形,边长为2,
∴三棱锥的体积V=××2××=1.
故选:D.
【点评】本题考查了由三棱锥的侧视图与俯视图求体积,判断三棱锥的结构特征及相关几何量的数据是解题的关键.
5.(5分)若a>b>0,c<d<0,则一定有( )
A.>B.< C.> D.<
【考点】R3:不等式的基本性质.菁优网版权所有
【专题】59:不等式的解法及应用.
【分析】利用特例法,判断选项即可.
【解答】解:不妨令a=3,b=1,c=﹣3,d=﹣1,
则,
∴C、D不正确;
=﹣3,=﹣
∴A不正确,B正确.
解法二:
∵c<d<0,
∴﹣c>﹣d>0,
∵a>b>0,
∴﹣ac>﹣bd,
∴,
∴.
故选:B.
【点评】本题考查不等式比较大小,特值法有效,带数计算正确即可.
6.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为( )
A.0B.1 C.2 D.3
【考点】7C:简单线性规划;E9:程序框图的三种基本逻辑结构的应用.菁优网版权所有
【专题】5K:算法和程序框图.
【分析】算法的功能是求可行域内,目标函数S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,得出最大值.
【解答】解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,
画出可行域如图:
当时,S=2x+y的值最大,且最大值为2.
故选:C.
【点评】本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.
7.(5分)已知b>0,log5b=a,lgb=c,5d=10,则下列等式一定成立的是( )
A.d=acB.a=cd C.c=ad D.d=a+c
【考点】4M:对数值大小的比较.菁优网版权所有
【专题】51:函数的性质及应用.
【分析】利用指数式与对数式的互化、对数的运算性质和换底公式即可得出.
【解答】解:由5d=10,可得,
∴cd=lgb=log5b=a.
故选:B.
【点评】本题考查了指数式与对数式的互化、对数的运算性质和换底公式,属于基础题.
8.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于( )
A.mB.m C.m D.m
【考点】HU:解三角形.菁优网版权所有
【专题】12:应用题;58:解三角形.
【分析】由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.
【解答】解:如图,∠DAB=15°,
∵tan15°=tan(45°﹣30°)==2﹣.
在Rt△ADB中,又AD=60,
∴DB=AD•tan15°=60×(2﹣)=120﹣60.
在Rt△ADC中,∠DAC=60°,AD=60,
∴DC=AD•tan60°=60.
∴BC=DC﹣DB=60﹣(120﹣60)=120(﹣1)(m).
∴河流的宽度BC等于120(﹣1)m.
故选:B.
【点评】本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.
9.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的直线mx﹣y﹣m+3=0交于点P(x,y),则|PA|+|PB|的取值范围是( )
A.[,2]B.[,2] C.[,4] D.[2,4]
【考点】5A:函数最值的应用;IM:两条直线的交点坐标.菁优网版权所有
【专题】5B:直线与圆.
【分析】可得直线分别过定点(0,0)和(1,3)且垂直,可得|PA|2+|PB|2=10.三角换元后,由三角函数的知识可得.
【解答】解:由题意可知,动直线x+my=0经过定点A(0,0),
动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),
∵动直线x+my=0和动直线mx﹣y﹣m+3=0的斜率之积为﹣1,始终垂直,
P又是两条直线的交点,∴PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.
设∠ABP=θ,则|PA|=sinθ,|PB|=cosθ,
由|PA|≥0且|PB|≥0,可得θ∈[0,]
∴|PA|+|PB|=(sinθ+cosθ)=2sin(θ+),
∵θ∈[0,],∴θ+∈[,],
∴sin(θ+)∈[,1],
∴2sin(θ+)∈[,2],
故选:B.
【点评】本题考查直线过定点问题,涉及直线的垂直关系和三角函数的应用,属中档题.
10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )
A.2B.3 C. D.
【考点】K8:抛物线的性质.菁优网版权所有
【专题】5E:圆锥曲线中的最值与范围问题.
【分析】可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.
【解答】解:设直线AB的方程为:x=ty+m,点A(x1,y1),B(x2,y2),
直线AB与x轴的交点为M(m,0),
由⇒y2﹣ty﹣m=0,根据韦达定理有y1•y2=﹣m,
∵•=2,∴x1•x2+y1•y2=2,
结合及,得,
∵点A,B位于x轴的两侧,∴y1•y2=﹣2,故m=2.
不妨令点A在x轴上方,则y1>0,又,
∴S△ABO+S△AFO═×2×(y1﹣y2)+×y1,
=.
当且仅当,即时,取“=”号,
∴△ABO与△AFO面积之和的最小值是3,
故选:B.
【点评】求解本题时,应考虑以下几个要点:
1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.
2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.
3、利用基本不等式时,应注意“一正,二定,三相等”.
二、填空题(本大题共5小题,每小题5分,共25分)
11.(5分)双曲线﹣y2=1的离心率等于 .
【考点】KC:双曲线的性质.菁优网版权所有
【专题】5D:圆锥曲线的定义、性质与方程.
【分析】根据双曲线的方程,求出a,b,c,即可求出双曲线的离心率.
【解答】解:由双曲线的方程可知a2=4,b2=1,
则c2=a2+b2=4+1=5,
则a=2,c=,
即双曲线的离心率e==,
故答案为:
【点评】本题主要考查双曲线的离心率的计算,求出a,c是解决本题的关键,比较基础.
12.(5分)复数= ﹣2i .
【考点】A5:复数的运算.菁优网版权所有
【专题】5N:数系的扩充和复数.
【分析】利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.
【解答】解:复数===﹣2i,
故答案为:﹣2i.
【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.
13.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()= 1 .
【考点】3Q:函数的周期性.菁优网版权所有
【专题】11:计算题.
【分析】由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.
【解答】解:∵f(x)是定义在R上的周期为2的函数,
∴=1.
故答案为:1.
【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.
14.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m= 2 .
【考点】9S:数量积表示两个向量的夹角.菁优网版权所有
【专题】5A:平面向量及应用.
【分析】利用向量的坐标运算、数量积运算、向量的夹角公式即可得出.
【解答】解:∵向量=(1,2),=(4,2),=m+(m∈R),
∴=m(1,2)+(4,2)=(m+4,2m+2).
∴=m+4+2(2m+2)=5m+8,=4(m+4)+2(2m+2)=8m+20.
,=2.
∵与的夹角等于与的夹角,
∴=,
∴,
化为5m+8=4m+10,
解得m=2.
故答案为:2.
【点评】本题考查了向量的坐标运算、数量积运算、向量的夹角公式,属于基础题.
15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:
①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;
②函数f(x)∈B的充要条件是f(x)有最大值和最小值;
③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.
④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.
其中的真命题有 ①③④ .(写出所有真命题的序号)
【考点】29:充分条件、必要条件、充要条件;2H:全称量词和全称命题;2I:存在量词和特称命题;2K:命题的真假判断与应用;34:函数的值域.菁优网版权所有
【专题】23:新定义;3A:极限思想;51:函数的性质及应用;59:不等式的解法及应用;5L:简易逻辑.
【分析】根据题中的新定义,结合函数值域的概念,可判断出命题①②③是否正确,再利用导数研究命题④中函数的值域,可得到其真假情况,从而得到本题的结论.
【解答】解:(1)对于命题①,若对任意的b∈R,都∃a∈D使得f(a)=b,则f(x)的值域必为R.反之,f(x)的值域为R,则对任意的b∈R,都∃a∈D使得f(a)=b,故①是真命题;
(2)对于命题②,若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].
∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f(x)无最大值,无最小值,故②是假命题;
(3)对于命题③,若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g(x)≤M.故f(x)+g(x)∈(﹣∞,+∞).
则f(x)+g(x)∉B,故③是真命题;
(4)对于命题④,∵﹣≤≤,
当a>0或a<0时,aln(x+2)∈(﹣∞,+∞),f(x)均无最大值,若要使f(x)有最大值,则a=0,此时f(x)=,f(x)∈B,故④是真命题.
故答案为①③④.
【点评】本题考查了函数值域的概念、基本不等式、充要条件,还考查了新定义概念的应用和极限思想.本题计算量较大,也有一定的思维难度,属于难题.
三、解答题(共6小题,共75分)
16.(12分)一个盒子里装有三张卡片,分别标记有数字1、2、3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a、b、c.
(Ⅰ)求“抽取的卡片上的数字满足a+b=c”的概率;
(Ⅱ)求“抽取的卡片上的数字a、b、c不完全相同”的概率.
【考点】C8:相互独立事件和相互独立事件的概率乘法公式.菁优网版权所有
【专题】5I:概率与统计.
【分析】(Ⅰ)所有的可能结果(a,b,c)共有3×3×3=27种,而满足a+b=c的(a,b,c有计3个,由此求得“抽取的卡片上的数字满足a+b=c”的概率.
(Ⅱ)所有的可能结果(a,b,c)共有3×3×3种,用列举法求得满足“抽取的卡片上的数字a,b,c完全相同”的(a,b,c)共计三个,由此求得“抽取的卡片上的数字a,b,c完全相同”的概率,再用1减去此概率,即得所求.
【解答】解:(Ⅰ)所有的可能结果(a,b,c)共有3×3×3=27种,
而满足a+b=c的(a,b,c)有(1,1,2)、(1,2,3)、(2,1,3),共计3个,
故“抽取的卡片上的数字满足a+b=c”的概率为=.
(Ⅱ)满足“抽取的卡片上的数字a,b,c完全相同”的(a,b,c)有:
(1,1,1)、(2,2,2)、(3,3,3),共计三个,
故“抽取的卡片上的数字a,b,c完全相同”的概率为=,
∴“抽取的卡片上的数字a,b,c不完全相同”的概率为1﹣=.
【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于中档题.
17.(12分)已知函数f(x)=sin(3x+).
(1)求f(x)的单调递增区间;
(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.
【考点】GP:两角和与差的三角函数;H5:正弦函数的单调性.菁优网版权所有
【专题】56:三角函数的求值.
【分析】(1)令 2kπ﹣≤3x+≤2kπ+,k∈z,求得x的范围,可得函数的增区间.
(2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得 (cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα 的值.
【解答】解:(1)∵函数f(x)=sin(3x+),令 2kπ﹣≤3x+≤2kπ+,k∈Z,
求得 ﹣≤x≤+,故函数的增区间为[﹣,+],k∈Z.
(2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,
∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),
∴sinαcos+cosαsin=(cosαcos﹣sinαsin)(cosα﹣sinα)(cosα+sinα)
即 (sinα+cosα)=•(cosα﹣sinα)2(cosα+sinα),
又∵α是第二象限角,∴cosα﹣sinα<0,
当sinα+cosα=0时,tanα=﹣1,sinα=,cosα=﹣,此时cosα﹣sinα=﹣.
当sinα+cosα≠0时,此时cosα﹣sinα=﹣.
综上所述:cosα﹣sinα=﹣或﹣.
【点评】本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.
18.(12分)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形
(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;
(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.
【考点】LS:直线与平面平行;LW:直线与平面垂直.菁优网版权所有
【专题】15:综合题;5F:空间位置关系与距离.
【分析】(Ⅰ)先证明AA1⊥平面ABC,可得AA1⊥BC,利用AC⊥BC,可以证明直线BC⊥平面ACC1A1;
(Ⅱ)取AB的中点M,连接A1M,MC,A1C,AC1,证明四边形MDEO为平行四边形即可.
【解答】(Ⅰ)证明:∵四边形ABB1A1和ACC1A1都为矩形,
∴AA1⊥AB,AA1⊥AC,
∵AB∩AC=A,
∴AA1⊥平面ABC,
∵BC⊂平面ABC,
∴AA1⊥BC,
∵AC⊥BC,AA1∩AC=A,
∴直线BC⊥平面ACC1A1;
(Ⅱ)解:取AB的中点M,连接A1M,MC,A1C,AC1,设O为A1C,AC1的交点,则O为AC1的中点.
连接MD,OE,则MD∥AC,MD=AC,OE∥AC,OE=AC,
∴MD∥OE,MD=OE,
连接OM,则四边形MDEO为平行四边形,
∴DE∥MO,
∵DE⊄平面A1MC,MO⊂平面A1MC,
∴DE∥平面A1MC,
∴线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC.
【点评】本题考查线面垂直的判定与性质的运用,考查存在性问题,考查学生分析解决问题的能力,属于中档题.
19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*)
(Ⅰ)证明:数列{bn}为等比数列;
(Ⅱ)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{anbn2}的前n项和Sn.
【考点】8M:等差数列与等比数列的综合.菁优网版权所有
【专题】54:等差数列与等比数列.
【分析】(Ⅰ)利用等比数列的定义证明即可;
(Ⅱ)先由(Ⅰ)求得an,bn,再利用错位相减求数列{anbn2}的前n项和Sn.
【解答】(Ⅰ)证明:由已知得,bn=>0,
当n≥1时,===2d,
∴数列{bn}为首项是,公比为2d的等比数列;
(Ⅱ)解:f′(x)=2xln2
∴函数f(x)的图象在点(a2,b2)处的切线方程为y﹣=ln2(x﹣a2),
∵在x轴上的截距为2﹣,
∴a2﹣=2﹣,∴a2=2,
∴d=a2﹣a1=1,an=n,bn=2n,anbn2=n4n,
∴Tn=1•4+2•42+3•43+…+(n﹣1)•4n﹣1+n•4n,
4Tn=1•42+2•43+…+(n﹣1)•4n+n•4n+1,
∴Tn﹣4Tn=4+42+…+4n﹣n•4n+1=﹣n•4n+1=,
∴Tn=.
【点评】本题考查等差数列与等比数列的概念,等差数列与等比数列的通项公式及前n项和公式,导数的几何意义等知识;考查学生的运算求解能力、推理论证能力,属中档题.
20.(13分)已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.
【考点】KH:直线与圆锥曲线的综合.菁优网版权所有
【专题】5D:圆锥曲线的定义、性质与方程.
【分析】(Ⅰ)由题意可得,解出即可;
(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),可得直线TF的斜率kTF=﹣m,由于TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).直线方程与椭圆方程可得根与系数的关系.由于四边形OPTQ是平行四边形,可得,即可解得m.此时四边形OPTQ的面积S=.
【解答】解:(Ⅰ)由题意可得,
解得c=2,a=,b=.
∴椭圆C的标准方程为;
(Ⅱ)由(Ⅰ)可得F(﹣2,0),
设T(﹣3,m),则直线TF的斜率,
∵TF⊥PQ,可得直线PQ的方程为x=my﹣2.
设P(x1,y1),Q(x2,y2).
联立,化为(m2+3)y2﹣4my﹣2=0,
△>0,∴y1+y2=,y1y2=.
∴x1+x2=m(y1+y2)﹣4=.
∵四边形OPTQ是平行四边形,
∴,∴(x1,y1)=(﹣3﹣x2,m﹣y2),
∴,解得m=±1.
此时四边形OPTQ的面积S=═=.
【点评】本题中考查了椭圆与圆的标准方程及其性质、直线与椭圆及圆相交可得根与系数的关系及弦长问题、向量相等问题、平行四边形的面积计算公式等基础知识与基本技能方法,考查了推理能力和计算能力,考查了数形结合和转化能力,属于难题.
21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.
(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.
【考点】51:函数的零点;6E:利用导数研究函数的最值.菁优网版权所有
【专题】53:导数的综合应用.
【分析】(1)求出f(x)的导数得g(x),再求出g(x)的导数,对它进行讨论,从而判断g(x)的单调性,求出g(x)的最小值;
(2)利用等价转换,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,所以g(x)在(0,1)上应有两个不同的零点.
【解答】解:∵f(x)=ex﹣ax2﹣bx﹣1,∴g(x)=f′(x)=ex﹣2ax﹣b,
又g′(x)=ex﹣2a,x∈[0,1],∴1≤ex≤e,
∴①当时,则2a≤1,g′(x)=ex﹣2a≥0,
∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;
②当,则1<2a<e,
∴当0<x<ln(2a)时,g′(x)=ex﹣2a<0,当ln(2a)<x<1时,g′(x)=ex﹣2a>0,
∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,
g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;
③当时,则2a≥e,g′(x)=ex﹣2a≤0,
∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,
综上:函数g(x)在区间[0,1]上的最小值为;
(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,
若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,
由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f(x)在区间(0,1)内至少有三个单调区间”这一要求.
若,则gmin(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1
令h(x)= (1<x<e)
则=,∴.由>0⇒x<
∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,
==<0,即gmin(x)<0 恒成立,
∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,
又,所以e﹣2<a<1,
综上得:e﹣2<a<1.
另解:由g(0)>0,g(1)>0 解出e﹣2<a<1,
再证明此时f(x)min<0 由于f(x)最小时,f'(x)=g(x)=ex﹣2ax﹣b=0,
故有ex=2ax+b且f(1)=0知e﹣1=a+b,
则f(x)min=2ax+b﹣ax2﹣(e﹣1﹣a)x﹣1=﹣ax2+(3a+1﹣e)x+e﹣a﹣2,
开口向下,最大值(5a2﹣(2e+2)a+e2﹣2e),分母为正,
只需看分子正负,分子<5﹣(2e+2)+e2﹣2e(a=1时取最大)=e2﹣4e+3<0,
故f(x)min<0,
故 e﹣2<a<1.
【点评】本题考查了,利用导数求函数的单调区间,分类讨论思想,等价转换思想,函数的零点等知识点.是一道导数的综合题,难度较大.